Bloodstain Analysis
Calculation of Impact Angles
By Bill Licopoli

Directions: Determine the ‘angle of impact’ for each bloodstain. Show all work.

1.

2.

3.

4.

5.

6.
Answers:
(measurements may be slightly different due to printer quality, size, etc.)
(work is shown for #1 only rounded to two significant figures)

1. \(w \) (width) = 1.0 cm
 \(l \) (length) = 2.2 cm
 The equation for the ‘angle of impact’ is:

 \[
 \sin \theta = \frac{\text{width}}{\text{length}}
 \]

 \[
 \sin \theta = \frac{1.0 \, \text{cm}}{2.2 \, \text{cm}}
 \]

 \[
 \theta = \sin^{-1} \left(\frac{1.0 \, \text{cm}}{2.2 \, \text{cm}} \right)
 \]

 \[
 \theta = 27 \, \text{degrees}
 \]

2. \(w \) (width) = .6 cm
 \(l \) (length) = 4.1 cm
 angle of impact = 8.4 degrees

3. \(w \) (width) = 1.3 cm
 \(l \) (length) = 1.6 cm
 angle of impact = 54 degrees

4. \(w \) (width) = .3 cm
 \(l \) (length) = 2.9 cm
 angle of impact = 5.9 degrees

5. \(w \) (width) = 1.3 cm
 \(l \) (length) = 2.2 cm
 angle of impact = 36 degrees

6. \(w \) (width) = 1.6 cm
 \(l \) (length) = 7.6 cm
 angle of impact = 12 degrees

7. \(w \) (width) = .6 cm
 \(l \) (length) = 8.3 cm
 angle of impact = 4.1 degrees

8. \(w \) (width) = 1.9 cm
 \(l \) (length) = 5.4 cm
 angle of impact = 21 degrees

9. \(w \) (width) = .9 cm
 \(l \) (length) = 6.1 cm
 angle of impact = 8.5 degrees
10. \(w \) (width) = 3.2 cm
 \(l \) (length) = 9.2 cm \hspace{1cm} \text{angle of impact} = 20 \text{ degrees}